

MATHEMATICS 81 E MODEL KEY ANSWERS

MODEL KEY ANSWERS ANNUAL EXAM-2022-23

1. Answer: (A) 3 2. Answer: (B) 0.25 3. Answer: (D) $2\prod r(r+h)$ 4. Answer: (C) 1 5. Answer: (A) 45⁰ 6. Answer: (C) $\frac{AD}{DB} = \frac{AE}{EC}$ 7. Option (D) Parallel lines 8. Option (B) 3 units 9. 80=2⁴X5¹ 10. a=3, b=6

10.
$$a=3, b=0$$

11. $PO=10cm$

12.
$$x^2+2x+3=0$$

13. $\Delta = b^2 - 4ac$

$$\Delta = (-4)^2 - 4x2x3$$

 $\Delta = 16 - 24$

Hence No real roots

14. The coordinates of the line joining the midpoints of two vertices are $P(x, y) = \left[\frac{mx^{2}+nx^{1}}{ny^{2}+ny^{1}}\right]$

$$= \begin{bmatrix} \frac{6+4}{2}, \frac{3+7}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{10}{2}, \frac{10}{2} \end{bmatrix}$$
$$= (5, 5)$$

15. Degree is 4

16. Volume of the frustum of a cone is given by $V = \frac{1}{3} \Pi h(r_1^2 + r_2^2 + r_1 r^2)$

17.

Solution:

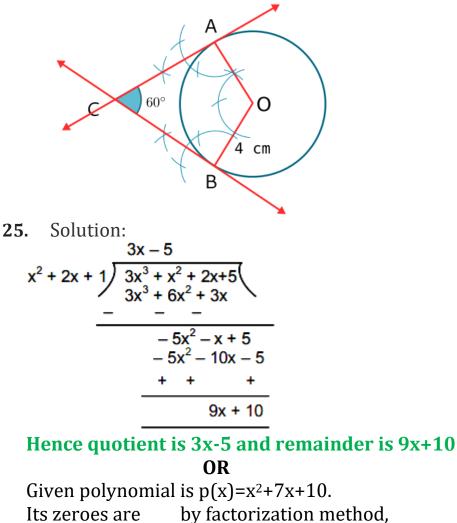
Let us assume that $5+\sqrt{3}$ is a rational number with p and q as coprime integer and $q \neq 0$

 $\Rightarrow 5+\sqrt{3} = p / q$ $\Rightarrow \sqrt{3} = p / q - 5$ $\Rightarrow \sqrt{3} = p / q - 5$ $\Rightarrow p / q - 5 \text{ is a rational number}$ However, $\sqrt{3}$ is in irrational number

This leads to a contradiction that $5+\sqrt{3}$ is a rational number wrong Hence $5+\sqrt{3}$ is an irrational number. OR Let the three numbers are 72 & 120 By Euclid's division algorithm, 72)120(1 72 48)72(1 **48** 24)48(2 **48** 0 Hence HCF of 72 & 120 is 24 18. Consider the given equation. 3x+y=12...... (1) x+y=6(2) On subtracting both equation (1) and (2), we get 2x=6 x=3 Now, put the value of x in equation (2), we get 3+y=6 **v=3** Hence, the value of x is 3 and y is 3Solution: Given A.P is 4, 7, 10, 19. here a=4, d=3 we have to find 20^{th} term means $a_{20}=a+19d$ =4+19x3 =4+57= 61 Hence 20th term of this A.P is 61 20. Given equation is $2x^2-5x+3=0$ By using formula method, $2x^2-5x+3=0$ We have $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{-5^2 - 4x2x(3)}}{2x2} = \frac{5 \pm \sqrt{25 - 24}}{4} = \frac{-5 \pm \sqrt{1}}{4}$ $x = \frac{5+1}{4}$ or $x = \frac{5-1}{4}$ $x = \frac{3}{2}$ or x = 1Here a= 2, b=-5 & c=3 $\sin \theta = \frac{1}{2}$ 21.

 $\cos \alpha = \frac{1}{2}$

- 22. Solution: possible outcomes:{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} Among them prime numbers are { 11, 13, 17, 19}=4 **Probability is** $\frac{n(E)}{n(S)} = \frac{4}{11}$
- **23.** Mark point E on DC, Such that EC=6cm.


In **ADE**

 $AD^{2}=AE^{2}+DE^{2}$ $5^{2}=AE^{2}+4^{2}$ $25=AE^{2}+16$ $25-16=AE^{2}$ $AE^{2}=9$

AE=3cm

Hence the distance between two parallel lines is 3cm

24. Solution:

 $x^{2}+7x+10$

$$\begin{array}{c} x^{2}+5x+2x+10 \\ x(x+5)+2(x+5) \\ (x+5)(x+2) \\ \alpha = -5 \& \bigcirc = -2 \\ \end{array}$$
Verification: we know that x²-(\alpha + \empi)x+\alpha \empi x \\ x^{2}-(-5-2)+-7x-2 \\ x^{2}+7x+10 \end{array}

Hence the proof

26. Solution:

We have
$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \sqrt{\frac{1+\cos A(1+\cos A)}{1-\cos A(1+\cos A)}}$$

$$= \sqrt{\frac{(1+\cos A)2}{(1-\cos A)2}}$$

$$= \sqrt{\frac{1+\cos A}{2}}$$

$$= \sqrt{\frac{1+\cos A}{2}}$$

$$= \frac{1}{\sin A} + \frac{\cos A}{\sin A}$$

$$= \operatorname{Cosec} A + \operatorname{Cot} A$$
OR
We have $\frac{\sin A}{1+\cos A} + \frac{1+\cos A}{\sin A}$

$$= \frac{\sin 2A + (1+\cos A)2}{\sin A(1+\cos A)}$$

$$= \frac{\sin 2A + (\cos A)}{\sin A(1+\cos A)}$$

$$= \frac{\sin 2A + \cos 2A + 1 + 2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{\sin 2A + \cos 2A + 1 + 2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{1+1+2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{2+2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{2(1+\cos A)}{\sin A(1+\cos A)}$$

- = 2 CosecA
- **27.** Solution:

We have to find mean

C.I	f	Х	fx
1-5	4	3	12
6-10	3	8	24
11-15	2	13	26
16-20	1	18	18
21-25	5	23	115
	N=15		195

CHITTI CREATIONS

Mean
$$=\frac{\sum fx}{N} = \frac{195}{15} = 13$$

OR

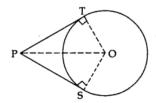
We have to find Mode for the following frequency data

C.I	f
1-3	9
3-5	9 f0
5-7	15 f1
7-9	9 f2
9-11	1
	N=60

LRL=5, f1=15, f0=9, f2=9 and h=3

We have formula Mode=LRL+ $\begin{cases} f1-f0\\ 2f1-f0-f2 \end{cases}$ h = $5+\frac{15-9}{30-9-9}$ x2 = $5+\frac{6}{6}$ = 5+1Mode=6

28. Solution: We have (-6, 10) and (3, -8) is divided by (-4, 6)


By section formula,

 $-4 = \left(\frac{m(3) + n(-6)}{m + n}\right) \text{ and } 6 = \left(\frac{m(-8) + n(10)}{m + n}\right)$ m+n= $\left(\frac{3m - 6n}{-4}\right)$ and m+n= $\left(\frac{-8m + 10n}{6}\right)$ on comparing both we get $\frac{3m - 6n}{-4} = \frac{-8m + 10n}{6}$ 18m-36n=32m-40n 4n=14m m/n=2/7

The ratio is 2:7

OR (1,-1), (-4,6) & (-3,-5) (x1,y1), (x2,y2) & (x3,y3) Area of the triangle is $A = \frac{1}{2} \{x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)\}$ $= \frac{1}{2} \{1(6+5) - 4(-5+1) + (-3)(-1-6)\}$ $= \frac{1}{2} (11+16+21)$ $= \frac{1}{2} (48)$ = 24 sq units. **29.Given:** PT and PS are tangents from an external point P to the circle with centre O.

To prove: PT = PS **Construction:** Join O to P, T and S.

Proof: In $\triangle OTP$ and $\triangle OSP$.

OT = OS ...[radii of the same circle]

 $OP = OP \dots [common]$

 $\angle OTP = \angle OSP \dots [each 90^{\circ}]$

 $\Delta OTP = \Delta OSP \dots [R.H.S.]$

 $PT = PS \dots [c.p.c.t.]$

30. Solution:

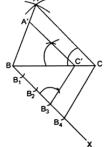
Area of shaded region= area of circle – area of sector of a circle OPQ----(1) In the given figure, OAB is an equilateral triangle.

Its area is $36\sqrt{3}$ sq cm.

We know $A = \frac{\sqrt{3}}{4} a^2$ (area of an equilateral triangle)

$$36\sqrt{3} = \frac{\sqrt{3}}{4}a^2$$

Then side of the triangle is 12cm, then radius of circle is 6cm (mid-point) At 0 angle should be 60° .


Area of sector =
$$\frac{60}{360} \times \frac{22}{7} \times 6 \times 6$$

= $\frac{132}{7}$

Area of a circle = $\frac{22}{7} \times 6 \times 6$

Equation 1 becomes $\frac{7}{792} - \frac{132}{2} = 94.28$ sq cm.

$$\frac{1}{7} - \frac{1}{7} = 94.28 \text{ sq c}$$

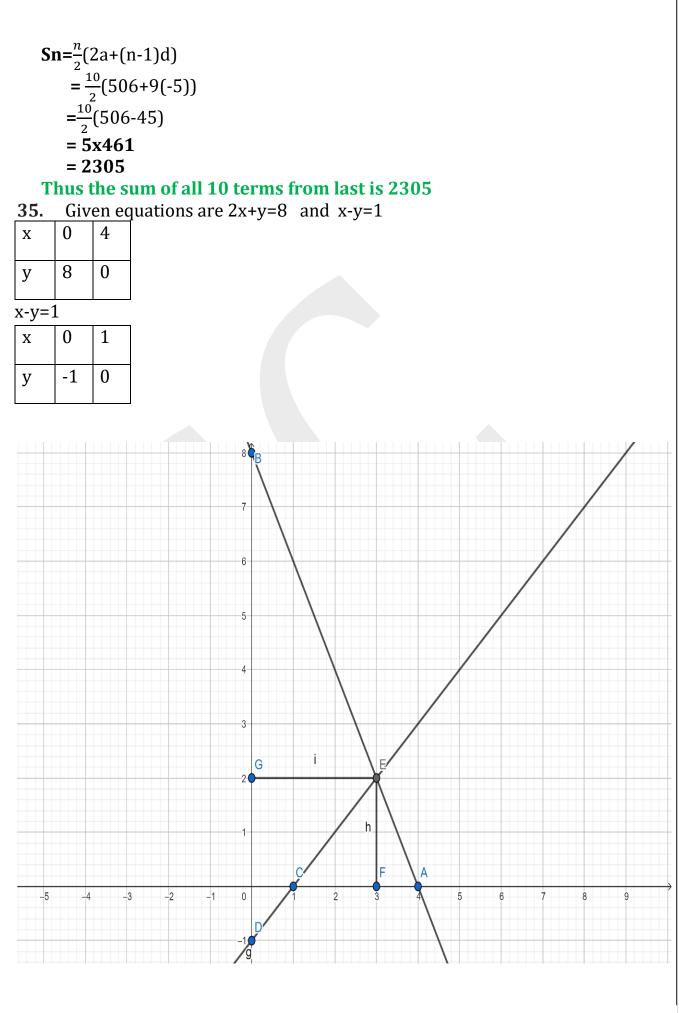
31. Solution:

32. Solution :

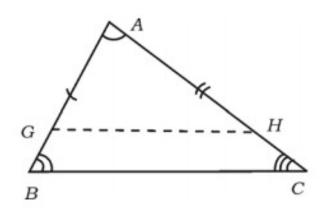
Let us say, the current average speed of car = x km/h. If it goes 11km/hr more then it would take 1 hour less Total distance between the two city is 132km. Therefore, according to question (132/x) - (132/(x+11)) = 1

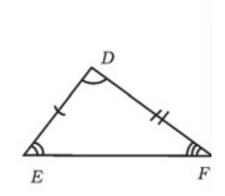
 $(102/n)^{-1} (102/(n+11))^{-1} = 1$ 132(x+11-x)/(x(x+11)) = 1 $\Rightarrow 132 \times 11 = x(x+11)$ $\Rightarrow x^{2} + 11x - 1452 = 0$ $\Rightarrow x^{2} + 44x - 33x - 1452 = 0$ $\Rightarrow x(x+44) - 33(x+44) = 0$ $\Rightarrow (x+44)(x-33) = 0$ $\Rightarrow x = -44, 33$

As we know, Speed cannot be negative. Therefore, the speed of the car 33 km/h.

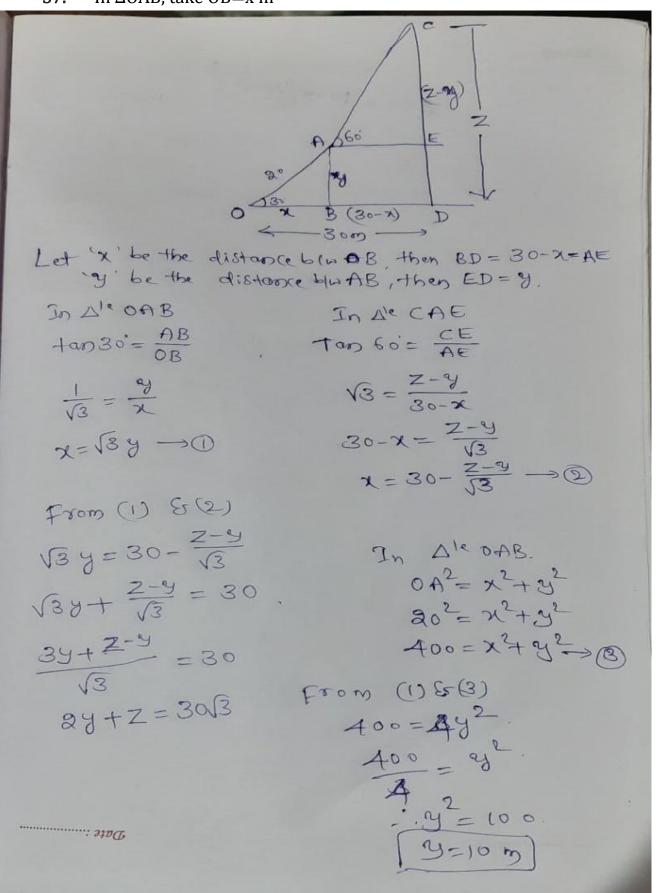

33. Solution:

C.I	Frequency	Coordinates
<20	2	(20, 2)
<25	6	(25, 6)
<30	24	(30, 24)
<35	45	(35, 45)
<40	78	(40, 78)
<45	89	(45, 89)
<50	100	(50, 100)




```
34. Solution:
```

```
The sum of second and fourth term of the arithmetic progression is 54
a2+a4=54
                         and S11=693
                              \frac{11}{2}(2a+10d)=693
2a+10d=126-----(2)
a+d+a+3d=54
2a+4d=54----(1)
From 1 and 2, subtract above we get
6d=72
d=12
thus common diffrence is 12, put this in equation 1 we get
2a+4(12)=54
2a=54-48
a=3
hene first term is 3
A.P is 3, 15, 27.....
Its 54<sup>th</sup> term is a+53d=3+53x12 = 3+636 = 639
According to question, 132+639=771 this will be an
an=771
a+(n-1)d=771
3+12n-12=771
12n = 768 + 12
12n=780
n=65
then 65<sup>th</sup> term is 132 more than its 54<sup>th</sup> term.
                              OR
Given: a=3 and l=253 and also a20=98
We know Sn = \frac{n}{2}(a+l)
                                      a+19d=98 =→ 3+19d=98 =→ d=5
           Sn = \frac{n}{2}(3+253)
Sn = \frac{n}{2}(256)
           Sn=nx128-\dots \rightarrow (1)
We know \operatorname{Sn}=\frac{n}{2}(2a+(n-1)d)
                = \frac{n}{2}(6+5n-5) 
= \frac{n}{2}(5n+1) - \cdots \rightarrow (2) 
From 1 and 2
nx128 = \frac{n}{2}(5n+1)
256 = 5n + 1
5n=255
n=51
Then A.P from last is 253, 248, 243, ......
a=253, d=-5
```



36.''If two triangles are equiangular, then their corresponding sides are proportional''.

Given: ∠BAC=∠EDF ∠ABC=∠DEF To prove: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ Construction: Mark points G and H on the side AB and AC such that AG=DE, AH=DF **proof**: in triangle AGH and DEF AG=DE.....by construction AH=DF by contsruction ∠GAH=∠EDF...Given therefore, $\triangle AGH \cong \triangle FED$ by SAS congruency thus ∠AGH=∠DEFby CPCT but ∠ABC=∠DEF ∠AGH=∠ABC thus GH∥BC Now, In triangle ABC $\frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$ Hence, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ hence proved.

37. In \triangle OAB, take OB=x m

0

Then equal be cannot

$$x = \sqrt{3}$$
 y.
 $x = \sqrt{3}$ y.
 $x = \sqrt{3}$ y.
Then equation (3) be campy
 $x = 30 - \frac{2-9}{\sqrt{3}}$
 $(0\sqrt{3} = 30 - \frac{2-10}{\sqrt{3}})$
 $(0\sqrt{3} + \frac{2-10}{\sqrt{3}} = 30)$.
 $10x3 + 2-10 = 30$.
 $20 + 2 = 30\sqrt{3}$.
 $2 - 2 = 30\sqrt{3}$.
 $2 = 30(1-73) - 20$
 $= 51-9-20$
 $(2 = 31-9)$

38. Given : Cone: area A=38.5 sq cm. we know area of circle A= $\prod r^2$ $38.5 = \frac{22}{7} r^2$ r²=12.25 r=3.5cm Then radius of the base of the cone as well as hemisphere is 3.5cm. Height of the cone is 15.5-3.5 = 12 cm, slant height of cone $l=\sqrt{122+3.52}$ $=\sqrt{144+12.25}$ $=\sqrt{156.25}$ l=12.5cm TSA of toy=CSA of cone+CSA of hemisphere $=\prod rl+2\prod r^{2}$ $=\prod r(l+2r)$ $=\frac{22}{7}$ x3.5(12.5+7) = 11(19.5)= 214.5 sq cm. Volume of Toy=volume of cone+volume of hemisphere $=\frac{1}{3}\prod r^{2}h+\frac{2}{3}\prod r^{3}$ $=\frac{1}{3}\prod r^2(h+2r)$ $=\frac{1}{3}x\frac{22}{7}x$ 3.5x3.5(12.5+7) $=\frac{11x3.5}{3}(19.5)$ = 250.25 cubic cm.